

Global ICT Standards Conference 2025

(세션1) ICT 표준화포럼 활동

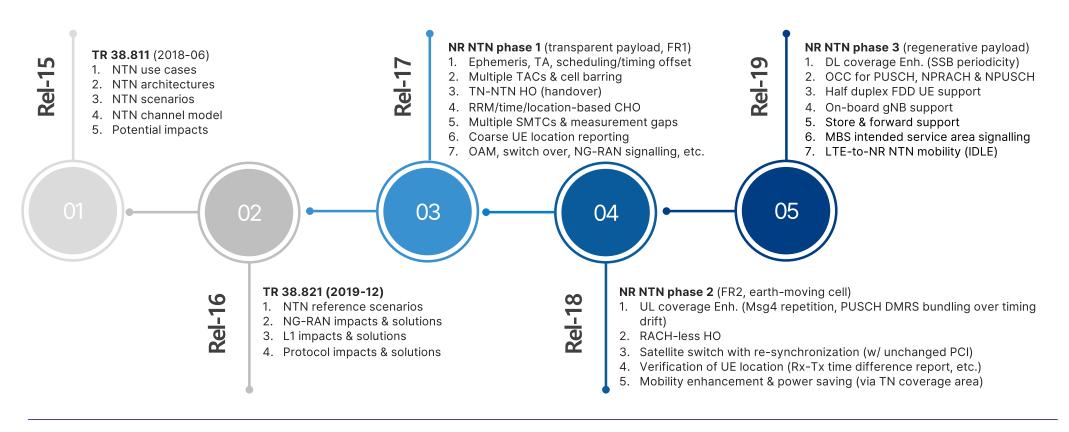
위성-지상망 연동: 3GPP NTN 표준화 동향

김중빈 책임연구원

ICT Standards and Intellectual Property: Al for All

Abstract

│ 최초의 위성-지상망 연동 규격 제정을 진행한 3GPP NR NTN의 표준화 동향 소개


위성-지상 융합을 위한 3GPP 6GR NTN의 표준화 방향 및 ETRI View 소개

Contents

O1 First Steps Toward TN-NTN Integration

02 6GR Toward Unified TN-NTN Network

3GPP NTN Specification Overview

3GPP NTN Key Features

Rel-15 NTN SI: Study on NR to support NTN (TR 38.811)

• Channel model, potential impact on NR

Rel-16 NTN SI: Solutions for NR to support NTN (TR 38.821)

• Architecture, potential solutions, reference scenario & parameters

Rel-17 NTN WI (NR_NTN_solutions): Solutions

• Solutions (UL sync. Timing relation, HARQ, time/location-based CHO), multiple SMTC & measurement gaps

ReI-18 NTN WI (NR_NTN_enh): Direct connectivity

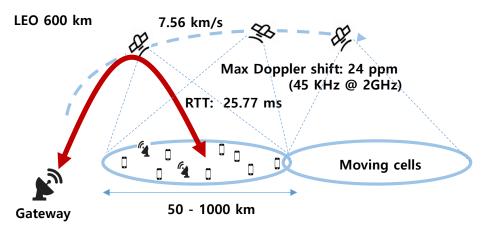
Direct connectivity (UL coverage enh.), NTN Bands (> 10GHz),
 RACH-less HO, network verified UE location, mobility enhancement, satellite switch with re-sync.

Rel-19 NTN WI (NR_NTN_Ph3): Performance optimization

Regenerative payload, Wide DL coverage, UL throughput enh (OCC),
 RedCap UE (Half-duplex FDD), store & forward, LTE-to-NR NTN mobility (idle mode)

Rel-20 NTN WI (NR_NTN_Ph4): GNSS resilient operation

• GNSS resilient operation

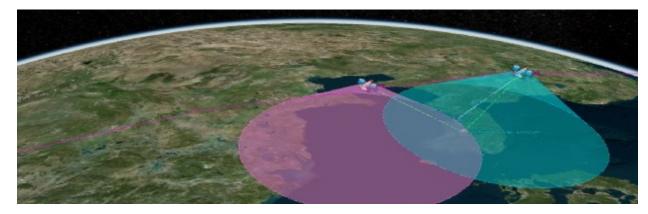

Rel-17 WID & Results

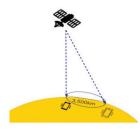
Rel-18 WID & Results Rel-19 WID & Results

WI for Rel-17 NR NTN solution

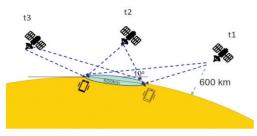
Issues: long propagation delays, large Doppler effects, moving cells

Rel-17 NTN WI (NR_NTN_solutions): Solutions To define solutions enabling NR and NG-RAN to support NTN

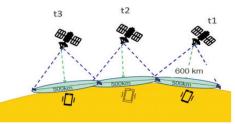

- Timing relationship enhancements (RAN1,2)
- Enhancements on UL time and frequency synchronization (RAN1,2)
- Enhancements on HARQ (RAN1,2)
- Signaling of polarization, beam management, feeder link switch, ... (RAN1,2)
- Conditional handover



Assumptions of Rel-17 NTN*


Assumptions on WI

- FDD
- Earth fixed and moving cells
- UEs with GNSS capabilities
- Transparent payload

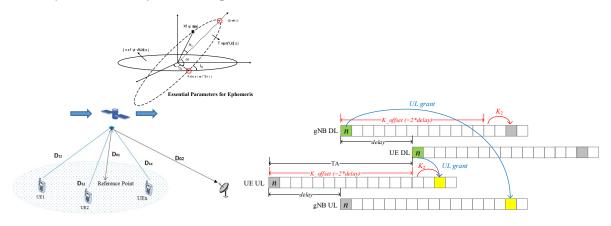


Quasi-Earth-Fixed Cell

Moving Cell

Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10077212

^{*} RP-201256 " Solutions for NR to support NTN (Release 17)," e-meeting, June 29 - July 3, 2020. (← Rel-17 NR NTN WID)



Objective of Rel-17 WI on NTN*

Issues: long propagation delays, large Doppler effects, moving cells

Solution

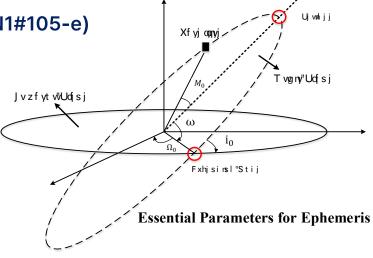
- Enhancements on UL time and frequency synchronization [RAN1,RAN2]
 - ✓ Pre-compensation by UE using GNSS & satellite orbit information

Source: [TR 38.821]

Delay & doppler differences

UL time sync. & timing relation

* RP-201256 " Solutions for NR to support NTN (Release 17)," e-meeting, June 29 - July 3, 2020. (← Rel-17 NR NTN WID)



UL Time/Frequency Synchronization

Orbit information format (@RAN1#105-e)

• Ephemeris format

• ECEF format (x, y, z, dx, dy, dz)

North Pole	 φ = latitude λ = longitude a = major axis b = minor axis x, y, z = ECEF position
Prime Meridian (0°longitude)	z
a	A Y
X	Equator (0° latitude)

Orbital plane	\sqrt{a}	Square root of semi major axis (semi-major axis)
parameters	е	Eccentricity (eccentricity)
	io	Inclination angle at reference time (inclination)
	Ω_0	Longitude of ascending node of orbit plane (right ascension of the
		ascending node)
	ω	Argument of perigee (argument of periapsis)
Satellite level	M_{0}	Mean anomaly at reference time (true anomaly and a reference point in
parameters		time)
	toe	Ephemeris reference time (the epoch)

Earth-Centered, Earth-Fixed (ECEF) coordinates in relation to latitude and longitude (source https://en.wikipedia.org/wiki/ECEF) [TR 38.821]

Essential elements of ephemeris [TR 38.821]

Objective of Rel-17 WI on NTN*

Issues: long propagation delays, large Doppler effects, moving cells

Solution

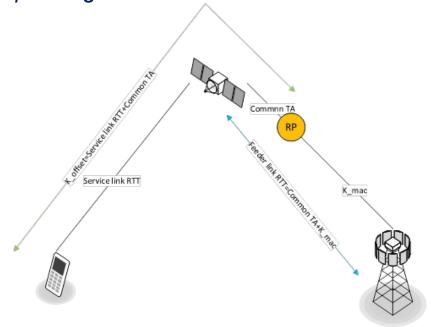
- Timing relationship enhancements [RAN1,RAN2]
 ✓ Introducing K_offset ← reducing signaling overhead
 - DCI scheduling PUSCH

 gNB DL

 n

 WE DL

 TA


 UE DL

 TA

 PUSCH at n+K₂ + K_{offset}

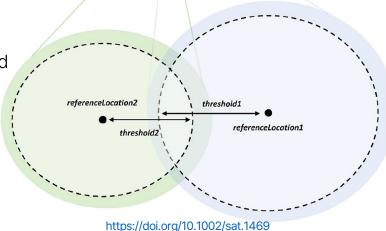
 PUSCH at n+K₂ + K_{offset}

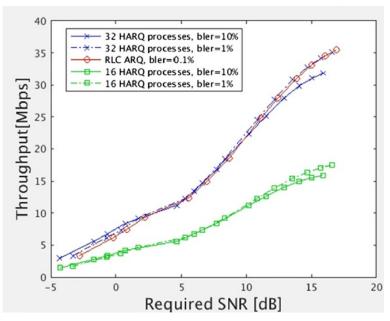
Transmission timing of PUSCH (source: TR38.821)

NR timing enhancement [TS 38.300]

^{*} RP-201256 " Solutions for NR to support NTN (Release 17)," e-meeting, June 29 - July 3, 2020. (← Rel-17 NR NTN WID)

Objective of Rel-17 WI on NTN


Issues: long propagation delays, large Doppler effects, moving cells


Solution

- HARQ enhancements (for throughput)
 - ✓ Number of HARQ process [RAN1] → 16→ 32
 - ✓ Enabling/disabling of HARQ feedback (when using RLC ARQ, semi-statically)
 - ✓ Codebook enhancement & slot aggregation enhancement

Solution

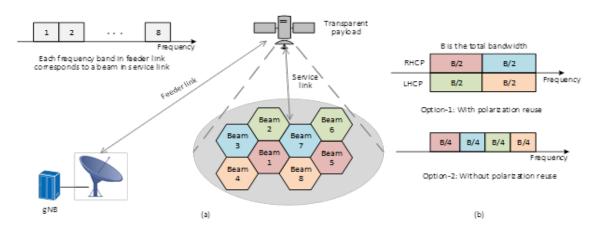
- Conditional handover
 - ✓ Location & timer based

https://doi.org/10.1002/sat.1461

Objective of Rel-17 WI on NTN*

Issues: long propagation delays, large Doppler effects, moving cells

Solution


- HARQ enhancements (for throughput)
 - ✓ Number of HARQ process [RAN1] → 16→ 32
 - ✓ Enabling/disabling of HARQ feedback (when using RLC ARQ, semi-statically)
 - ✓ Codebook enhancement & slot aggregation enhancement

Objective of Rel-17 WI on NTN*

Satellite beam operations based on NR

- Beam management and Bandwidth Parts (BWP) operation for NTN with frequency reuse [RAN1/2]
 - ✓ Define signalling of polarization mode: RHCP, LHCP, linear
 - ✓ Beam layout: reuse PCI and beam ID (for small beam indication), BWP (for freq. reuse)

Beam layout & polarization

Source: R1-2007233 Feature lead summary#4 on other enhancements of NR NTN Moderator (MediaTek)

* RP-201256 " Solutions for NR to support NTN (Release 17)," e-meeting, June 29 - July 3, 2020. (← Rel-17 NR NTN WID)

Rel-17 WID & Results Rel-18 WID & Results Rel-19 WID & Results


위성-지상망 연동: 3GPP NTN 표준화 동향

WI for Rel-18 NR NTN Enh*

Activities for Mobile Satellite Services (MSS)

- Sep. 8, 2023: first phone call b/w smartphone & LEO satellite (AT&T & AST SpaceMobile)**
- Jan. 3, 2024: SpaceX launched first T-Mobile Direct-to-Cell satellites (on 1900 MHz)
- Mar. 14, 2024: FCC approved SCS regulatory ***
- Commercial agreement & partnership
 - ✓ AT&T & AST SpaceMobile (May 15, 2024)
 - ✓ Verizon & AST SpaceMobile on 850 MHz (May 29, 2024)

SCS: supplemental coverage from space

^{**}WCA https://wca.org/the-initial-satellite-5g-phone-call-was-assisted-by-att/

^{***} https://spacenews.com/fcc-approves-direct-to-smartphone-regulatory-framework/

WI for Rel-18 NR NTN Enh*

Rel-18 NTN WI (NR_NTN_enh): Direct connectivity

- To introduce enhancements for NR NTN:
 - √ Coverage enhancement (RAN1)
 - ✓ NR-NTN deployment in above 10 GHz bands (RAN4)
 - ✓ Network verified UE location (RAN1)
 - ✓ NTN-TN and NTN-NTN mobility and service continuity enhancements (RAN2)

CN

WI for Rel-18 NR NTN Enh*

| Targeted services:

- VoIP using AMR* 4.75 kbps
- Low rate data service of 3 kbps

Reference scenario & parameters (for UL CovEhn)

 Parameter set-1 for LEO-1200 satellite operating at LOS and commercial smartphones with -5.5 dBi antenna gain and 3 dB polarisation loss

Detailed objectives (@RAN#97)

- PUCCH enhancements for Msg4 HARQ-ACK (e.g. repetition) [RAN1, RAN4]
- <u>DMRS bundling for PUSCH for VoIP</u> considering time-frequency pre-compensation [RAN1]

Satellite/HAPS NR via frequency f2 NR via frequency f2 Gateway 5 G RAN

Transparent (bent-pipe)

Source: TR 38.821

* RP-223534, "Revised WID: NR NTN enhancements, RAN#98e, Dec. 12 - 16, 2022.

AMR: adaptive multi-rate speech codec

Rel-17 WID & Results Rel-18 WID & Results Rel-19 WID & Results

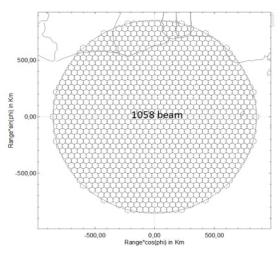
WI for Rel-19 NR NTN Ph3*

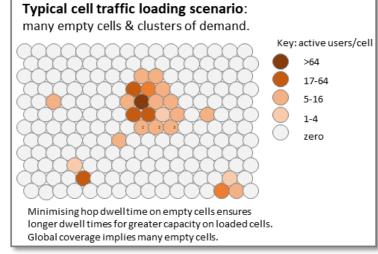
Rel-19 NTN WI (NR_NTN_Ph3): Performance optimization To define further enhancements for NG-RAN based NTN:

- NR-NTN downlink coverage enhancement (RAN1,2,4)
 - → Introducing of new default 160ms SSB periodicity
 - → Enhancing PDCCH CSS, PDSCH with Msg4, PDSCH with SIB1/SIB19
- NR-NTN uplink capacity/throughput enhancement (RAN1,2,4)
- Specify signaling of MBS broadcast via NTN (RAN2,3)
- Support of RedCap and eRedCap UEs with NR NTN operating in FR1-NTN bands (RAN4,1)
- Support of regenerative payload (RAN3,2,4)

| Assumptions

- Transparent payload & regenerative payload
- Earth fixed & Earth moving cells
- FDD
- UEs with GNSS
- Band: only VSAT for FR2


^{*} RP-244078, New WID: NTN for NR Phase 3, RAN#102, Dec. 11-15, 2023.



Motivation for DL CE*

Motivations: cost reduction

- Wide satellite coverage (> 1500 km)
- Cell traffic adaptation

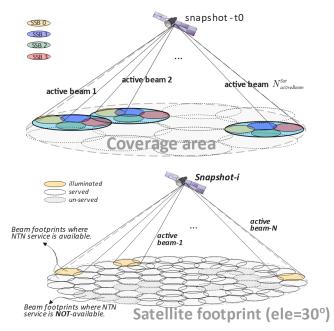
Source: Thales

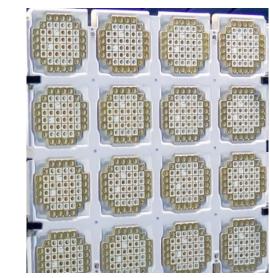
Justification: To offer optimized performance

- Objective
 - ✓ Maximizing the number of beams & overall throughput → by beam hopping (TDM manner)
 - ✓ All cells are kept alive
- Constraints
 - ✓ Limited power & feeder link BW

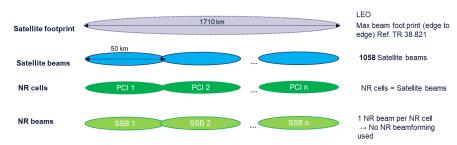
DL CE system-level aspect [R1-2400897, Eutelsat]

- Different cell traffic load


^{*} RP-244078, New WID: NTN for NR Phase 3, RAN#102, Dec. 11-15, 2023.


Considering Scenarios

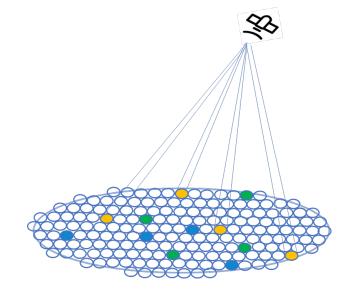
Beam operation scenario: beam hopping


- Power sharing
- Dynamic beam size

Phased antenna array [AST SpaceMobile]

Option 1: Single NR cell per satellite beam and single NR beam cell [Thales]

Reference Parameters for Evaluations


Updated reference parameters (@ RAN1#116, Mar. 2024)

Additional reference satellite parameters scenarios:
 LEO600km Set1-1 FR1, Set1-2 FR1, and Set1-3 FR1 (S-band)

LEO600km Set1-1 FR1 (i.e., S-band)	
Maximum Bandwidth per beam	<mark>5 MHz</mark>
SCS	15 kHz
Beam size(Note 1)	50km
Satellite EIRP density /beam (dBW/MHz)	<mark>34</mark>
Payload Total DL power level (dBW)	<mark>31.24</mark>
Aggregated EIRP (Total) (dBW)	<mark>61.24*</mark>
Satellite Tx max Gain	30 dBi
Maximum EIRP per Satellite beam (dBW)	41
Total number of beam footprints***	<mark>1058</mark>
Total number of simultaneously active beams **	<mark>106</mark>
% simultaneously active beams**	10.02 %

^{*}Note: EIRP limit is 61.24 dBm for the reference configuration.

Note 1: At least this beam size is considered in this scenario, different larger beam sizes m aybe evaluated and reported by companies

^{**}Assuming 100 % Resource Block utilization within the same beam at max power. Absolute number of simultaneously active beams is up to 212 (due to limitation of RF)

^{***} For a constellation design at 600km with low elevation angle with 30° and selected (i.e Set 1 parameters) beam size

Reference Parameters for Evaluations

Updated reference parameters (@ RAN1#116, Mar. 2024)

Additional reference satellite parameters scenarios:
 LEO600km Set1-1 FR1, Set1-2 FR1, and Set1-3 FR1 (S-band)

LEO600km Set1-2 FR1 (i.e., S-band)	
Maximum Bandwidth per beam	5 MHz
SCS	15 kHz
Beam size (note 1)	50km
Satellite EIRP density /beam (dBW/MHz)	34
Payload Total DL power level (dBW)	23
Aggregated EIRP (Total) (dBW)	53*
Satellite Tx max Gain	30 dBi
Maximum EIRP per Satellite beam (dBW)	41
Total number of beam footprints	<mark>1058</mark>
Total number of simultaneously active beams**	<mark>16</mark>
% simultaneously active beams**	1.5 %

^{*}Note: EIRP limit is 53 dBm for the reference configuration.

Note 1: At least this beam size is considered in this scenario, <u>larger-different-beam sizes</u> maybe evaluated and reported by companies

LEO600km Set 1-3 FR1 (i.e., S-band)	
Maximum Bandwidth per beam	5 MHz
SCS	15 kHz
Beam size (note 1)	50km
Satellite EIRP density /beam (dBW/MHz)	26
Payload Total DL power level (dBW)	23.24
Aggregated EIRP (Total) (dBW)	53.24*
Satellite Tx max Gain	30 dBi
Maximum EIRP per Satellite beam (dBW)	33
Total number of beam footprints	<mark>1058</mark>
Total number of simultaneously active beams**	<mark>106</mark>
% simultaneously active beams**	10.02 %

^{*}Note: EIRP limit is 53.24 dBm for the reference configuration.

Note 1: At least this beam size is considered in this scenario, <u>larger</u> different beam sizes maybe evaluated and reported by companies

^{**}Absolute number of simultaneously active beams is up to 16 (due to li mitation of RF)

^{**}Absolute number of simultaneously active beams is up to 212 (due to limit ation of RF)

Contents

O1 First Steps Toward TN-NTN Integration

02 6GR Toward Unified TN-NTN Network

Rel-20 new SID (NR_NTN_Ph4): Study on GNSS resilient NR-NTN operation

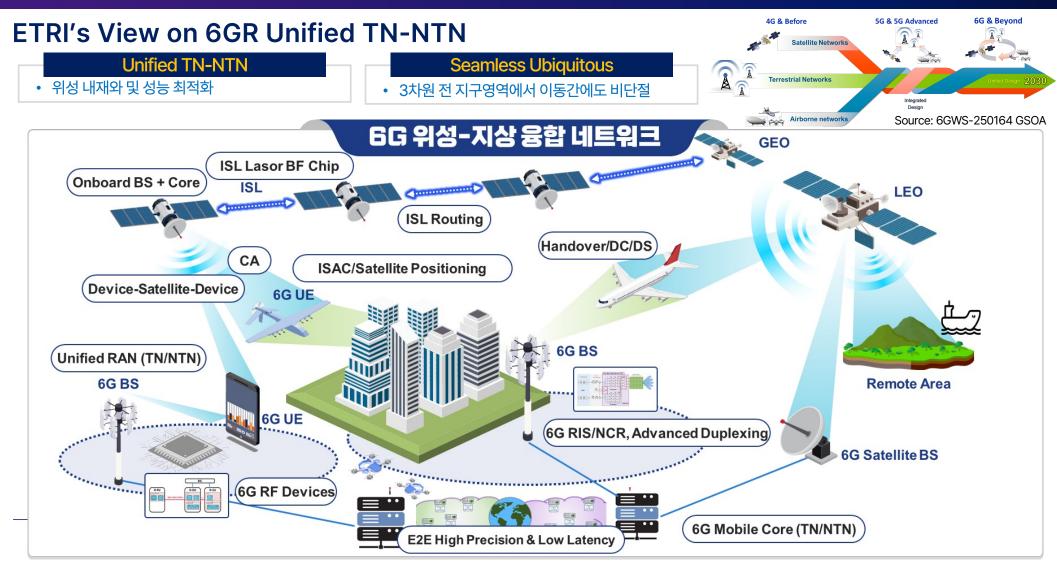
Objectives

- The study will be carried assuming that
 - ✓ The GNSS information in UE with GNSS capability may be 1/temporarily unavailable or 2/available but with GNSS position accuracy degradation or 3/available but with increased GNSS measurement period for power saving purpose
 - ✓ This study will initially focus on 1/ (where GNSS information is temporarily unavailable)
 - ✓ Note: This study does not include any enhancement on positioning for the above scenario
- Study GNSS resilient NR-NTN operation [RAN1, RAN4]
 - ✓ Assess impact on initial access and connected mode procedures for NR-NTN, including potential implications if any on RAN4 RRM specifications
 - Aim to minimize physical layer procedures impact
 - Avoid physical layer channel/signal changes
 - Backward compatible issues with legacy NTN capable UEs will be assessed and should be prevented
 - Applicable to NGSO and GSO constellations, NTN operating in below and in above 10 GHz frequency bands, transparent and regenerative satellites
 - ✓ Check in RAN#112 (June, 2026) to decide whether to proceed with normative work, extend the study item, or postpone normative work to Release 21

^{*} RP-251863, New SID: Study on GNSS resilient NR-NTN operation, RAN#108, June 9-13, 2025.

6GR RAN1 Study Agenda

11 Rel-20 Study of 6GR


- Please refer to RP-251881 for the scope of the SI. The maximum number of contributions per company/organization/university is limited to 1 per agenda item unless stated otherwise.
- 11.1 Overview of 6GR air interface
 - ✓ High level design proposals/principles/target and overall design of 6G air interface to illustrate/address the pain points observed from different angles, ... as well as concepts and aspects of harmonization of TN and NTN, etc
- 11.2 Evaluation assumptions for 6GR air interface
- 11.3 Waveform and frame structure for 6GR air interface
 - √ 11.3.1 Waveform
 - √ 11.3.2 Frame structure
- 11.4 Channel coding and modulation for 6GR interface
 - √ 11.4.1 Channel coding
 - √ 11.4.2 Modulation, joint channel coding and modulation
- 11.5 Energy efficiency
- 11.6 AI/ML in 6GR interface

••••

• 11.12 NTN

✓ No contributions before RAN1#124

Global ICT Standards Conference 2025

- 감사합니다 -

김중빈 책임연구원 한국전자통신연구원 jbkim777@etri.re.kr

ICT Standards and Intellectual Property: Al for All

